FastTrack - MA109 Factoring Polynomials

Katherine Paullin, Ph.D. Lecturer, Department of Mathematics University of Kentucky **katherine.paullin@uky.edu**

Tuesday, August 16, 2016

Hello! Just a fun way to take attendance today...

What is your favorite kind of ice cream?

1 The Greatest Common Factor

- 2 Common Binomial Factors and Factoring by Grouping
- **③** Factoring Quadratic Polynomials
- 4 Factoring Special Forms and Quadratic Forms

Section 1

The Greatest Common Factor

<ロ><回><一><一><一><一><一><一><一</th>4ロ>4/29

To **factor** an expression means to *rewrite the expression as an equivalent product*.

Example:

 $\overline{2x^2 + 6x} = 2(x^2 + 3x)$ 2 is a factor of $2x^2 + 6x$

The **greatest common factor** (or GCF) is the largest factor common to *all* terms in the polynomial.

Example:

 $\overline{2x^2+6x} = 2x(x+3)$ 2x is the greatest common factor of $2x^2+6x$

Always factor out the GCF first!!

Factor each polynomial.

■
$$12x^2 + 18xy - 30y$$

GCF = 6
 $12x^2 + 18xy - 30y = 6(2x^2 + 3xy - 5y)$
■ $x^5 + x^2$
GCF = x^2
 $x^5 + x^2 = x^2(x^3 + 1)$

Find the GCF.

$$1 -13n^2 - 52$$

<ロ> (四)、(四)、(日)、(日)、(日)

Factor out the GCF.

1
$$-13n^2 - 52$$

$$9p^2 + 27p^3 - 18p^4$$

Factor out the GCF.

-13n² - 52 GCF= -13 -13n² - 52 = -13(n² + 4)
9p² + 27p³ - 18p⁴ GCF = 9p² 9p² + 27p³ - 18p⁴ = 9p²(1 + 3p - 2p²)

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

Section 2

Common Binomial Factors and Factoring by Grouping

<ロ > < 部 > < 注 > < 注 > 注) Q () 10 / 29 If a polynomial has a common binomial factor, it can also be factored out using the distributive property.

イロン イロン イヨン イヨン 三日

11/29

Example:

$$(x+3)x^2 + (x+3)5 = (x+3)(x^2+5)$$

You try!

Factor: $x^2(x-2) - 3(x-2)$

If a polynomial has a common binomial factor, it can also be factored out using the distributive property.

Example:

$$(x+3)x^2 + (x+3)5 = (x+3)(x^2+5)$$

You try!

Factor:
$$x^2(x-2) - 3(x-2)$$

 $(x^2 - 3)(x - 2)$

Factoring by Grouping

Factor $3t^3 + 15t^2 - 6t - 30$. First factor out the GCF.

 $3t^3 + 15t^2 - 6t - 30 = 3(t^3 + 5t^2 - 2t - 10)$

When we have a polynomial with 4 terms, this is our hint to factor by grouping.

$$3t^{3} + 15t^{2} - 6t - 30 = 3(t^{3} + 5t^{2} - 2t - 10)$$

= 3([t^{3} + 5t^{2}][-2t - 10])
= 3(t^{2}[t + 5] - 2[t + 5])
= 3((t + 5)(t^{2} - 2))

Factor by grouping.

$$1 6h^3 - 9h^2 - 2h + 3$$

$$3x^2 - xy - 6x + 2y$$

・ロ ・ ・ 一部 ・ く 注 ト く 注 ト 注 の Q (0)
14 / 29

Examples

Factor by grouping.

1 $6h^3 - 9h^2 - 2h + 3$

$$6h^3 - 9h^2 - 2h + 3 = (6h^3 - 9h^2)(-2h + 3)$$

= $3h^2(2h - 3) - 1(2h - 3)$
= $(3h^2 - 1)(2h - 3)$

(a)
$$3x^2 - xy - 6x + 2y$$

 $3x^2 - xy - 6x + 2y = (3x^2 - xy)(-6x + 2y)$
 $= x(3x - y) - 2(3x - y)$
 $= (3x - y)(x - 2)$

Section 3

Factoring Quadratic Polynomials

<ロト < 部 > < 言 > < 言 > 言 の < で 16 / 29 A quadratic polynomial is one that can be written as $ax^2 + bx + c$ where a, b, c are real numbers and $a \neq 0$. $ax^2 + bx + c$, where a = 1

When a=1, then x^2 can only be factored as $x \cdot x$. Consider the FOIL method.

$$(x+b)(x+a) = x2 + ax + bx + ab$$
$$= x2 + (a+b)x + ab$$

イロン 不通と 不通と 不通とし 油

Factoring Trinomials with a Leading Coefficient of 1

If the constant term is positive, the binomials will have *like* signs:

to math the sign of the linear (middle) term. If the constant term is negative, the binomials will have *unlike*signs:

(x+)(x-),

with the larger factor placed in the binomial whose sign matches the linear (middle) term.

Example:

$$-x^{2} + 11x - 24 = -1(x^{2} - 11x + 24)$$
$$= -1(x -)(x -)$$
$$= -1(x - 8)(x - 3)$$

You try!

Factor $x^2 - 10 - 3x$.

<ロ > < 部 > < 注 > < 注 > 注 の < C 19 / 29

Examples

Example:

$$-x^{2} + 11x - 24 = -1(x^{2} - 11x + 24)$$
$$= -1(x -)(x -)$$
$$= -1(x - 8)(x - 3)$$

You try!

Factor $x^2 - 10 - 3x$.

$$x^{2} - 10 - 3x = x^{2} - 3x - 10$$
$$= (x +)(x -)$$
$$= (x + 2)(x - 5)$$

What happens when the coefficient of the leading term is not 1? $ax^2 + bx + c$ where $a \neq 1$ Try the AC Method!

For factoring $Ax^2 + Bx + C$

- Multiply $A \cdot C$.
- List the factors of A · C, and locate the two factors that add to give you B.
- Solution Add an "x" to your factors, and write them in place of Bx.
- Factor by grouping.

Examples

Factor $6z^2 - 11z - 35$. AC=(6)(-35)=-210 Factors of 210 $1 \cdot 210$ $2 \cdot 105$ $3 \cdot 70$ $5 \cdot 42$ $6 \cdot 35$ 7 · 30 $10 \cdot 21 \rightarrow 10$ and -21 $14 \cdot 15$ 2 2

$$6z^{2} - 11z - 35 = 6z^{2} + 10z - 21z - 35$$

= $(6z^{2} + 10z)(-21z - 35)$
= $2z(3z + 5) - 7(3z + 5)$
= $(2z - 7)(3z + 5)$

Section 4

Factoring Special Forms and Quadratic Forms

(□) (圖) (필) (필) (필) (필) (23/29)

Special Forms

Difference of Perfect Squares

 $A^2 - B^2 = (A+B)(A-B)$

Perfect Square Trinomials

$$A^{2} + 2AB + B^{2} = (A + B)^{2}$$

 $A^{2} - 2AB + B^{2} = (A - B)^{2}$

Note: The previous two special types can be factored using the AC method.

Sum or Difference of Two Perfect Cubes

 $A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$ $A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$

Note: This type you should recognize as a special case, because you can't factor it using the AC method.

Examples

Factor these special cases.

1 $4s^2 - 25$

$$4s^{2} - 25 = (2s)^{2} - (5)^{2}$$
$$= (2s + 5)(2s - 5)$$

2 $z^2 - 18z + 81$

$$z^{2} - 18z + 81 = (1z)^{2} - 2(9)(1z) + (9)^{2}$$
$$= (z - 9)^{2}$$

25 / 29

2

ヘロト 人間ト 人間ト 人間ト

Section 5

Practice

Factor

$$1 h^5 - 12h^4 - 3h + 36$$

2
$$50x^2 - 72$$

3
$$p^2 - 13p - 10$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Factor

1
$$3p^2 - 13p - 10$$

<ロ> (四) (四) (注) (三) (三)

Factor

- $h^5 12h^4 3h + 36$ $(h - 12)(h^4 - 3)$
- 2 $50x^2 72$ 2(5x - 6)(5x + 6)
- $\begin{array}{c} \textbf{3} \quad 3p^2 13p 10\\ (3p + 2)(p 5) \end{array}$

イロト 不得 とくほと くほとう ほ